BMSCW LIBRARY OUESTION PAPER

M.Sc. - Mathematics

I Semester End Examination - May 2022

Topology – I

Course Code: MM103T Time: 3 hours

OP Code: 11003 Total Marks: 70

Instructions: 1) All questions carry equal marks.

- 2) Answer any five full questions.
- 1. (a)Show that
 - (i) Superset of an infinite set is infinite. (ii) Subset of a finite set is finite.
 - (b) Define finite and infinite sets. Let $g: X \to Y$ be an one one correspondence. If the set X is infinite then prove that *Y* is infinite.

(7+7)

2. (a) Define denumerable set. Prove that every infinite subset of a denumerable set is denumerable. (b) State and prove Schroder – Berstein theorem.

(7+7)

- 3. (a) Define metric space. Suppose (X, d) is a metric space, let $d_1(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$ be defined on $X \times X$. Prove that d_1 is a metric on X.

(b) Prove that a subspace Y of a complete metric space (X, d) is complete if and only if Y is closed.

(7+7)

- 4. (a) State and prove contraction mapping theorem.
- (b). If (X, d) is totally bounded then prove that it is bounded but not conversely true. (8+6) 5. (a) For any $A \subseteq (X, \tau)$ prove that $A \cup d(A)$ is closed set.
 - (b) Prove that a set A is closed if and only if $d(A) \subseteq A$. (c) For any set A in (X, τ) (i) A is open $\Leftrightarrow A = A^0$ (ii) $A \subseteq B$ then $A^0 \subseteq B^0$.
- 6. (a) Let (X, τ) be a topological space. Show that a sub family \mathfrak{B} of τ is a base for τ if and only if for every $U \in \tau$ and $x \in U$ there is a $B \in \mathfrak{B}$ such that $x \in B \in U$. (b) Prove that a function $f: X \to Y$ is continuous if and only if inverse of open set is open.
 - (7+7)

(5+5+4)

- 7. (a) Let (X, τ) be a topological space. Prove the following
 - X is neighbourhood of every point. (i)
 - If A is a neighbourhood of x and $A \subseteq B$ then B is also a neighbourhood of x. (ii)
 - (b) Show that a bijective function $f: X \to Y$ is homeomorphism if and only if $f(\overline{A}) = \overline{f(A)}$ for all $A \subseteq X$
- 8. (a) Show that closure of a connected set is connected.
 - (b) Prove that union of family of connected sets with non-empty intersection is connected.
 - (c) Give an example to show that a connected space is not locally connected.

(5+5+4)

(7+7)